Vol 6, No 2 (2019) > Articles >

Karakter Fisik dan Aktivitas Antibakteri Nanopartikel Perak Hasil Green Synthesis Menggunakan Ekstrak Air Daun Sendok (Plantago major L.)

Komang Tri Aksari Dewi , Kartini Kartini , Johan Sukweenadhi , Christina Avanti

 

Abstract:

Silver nanoparticles have been studied for its application in wound healing therapy, while aqueous extract of Plantago major L has been studied also for its antibacterial and wound healing activity. This study aimed to obtain silver nanoparticles (AgNPs) through a green synthesis pathway using aqueous extract of Plantago major L. The initial study was performed to optimize the three concentration points of Plantago major L. aqueous extract, namely 0.125%, 0.25% and 0.5% and three synthetic temperature points (60 °C, 70 °C, and 80 °C). The formation of AgNPs were confirmed using a UV-Vis spectrophotometer which shows a peak at a wavelength of 445 nm. The obtained silver nanoparticles were then characterized using Dynamic Light Scattering (DLS Nano), Scanning Electron Microscope (SEM) dan X-Ray Diffraction (XRD). The study showed that the extract concentration of 0.25% with an optimum temperature of 70 °C was the optimal combination to produce the best AgNPs, based on the organoleptic parameters (as the color of silver was produced), the highest yield with weight of 9.13 mg and particle size of 129.20 nm with Polydispersity Index (PDI) of 0.25. The morphology of AgNPs showed the spherical shape and the crystallization of AgNPs showed a diffractogram pattern similar to the silver standard using X-Ray Diffraction (XRD). Antibacterial activity of AgNPs was tested against three bacterial strains, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa and was measured with diffusion method using paper disc. The antibacterial activity testing showed that AgNPS has better antibacterial activity than silver nitrate and is equivalent to its comparative antibiotics, gentamicin sulfate for gram-negative bacteria and Chloramphenicol for gram-positive bacteria.



Nanopartikel perak telah diteliti pemanfaatannya untuk terapi penyembuhan luka, dan ekstrak air daun sendok (Plantago major L.) juga diteliti aktivitasnya sebagai antibakteri dan penyembuhan luka. Penelitian ini bertujuan untuk mendapatkan nanopartikel perak (AgNPs) melalui jalur green synthesis menggunakan ekstrak air daun sendok (Plantago major L.). Tahap awal penelitian dilakukan dengan melakukan optimasi terhadap tiga konsentrasi ekstrak air Daun Sendok, yaitu 0,125%, 0,25% dan 0,5% dan tiga suhu sintesis yaitu 60°C, 70°C, dan 80°C. Terbentuknya AgNPs dikonfirmasi menggunakan spektrofotometer UV-Vis yang menunjukkan puncak pada panjang gelombang 445 nm. Nanopartikel perak yang terbentuk dikarakterisasi dengan Dynamic Light Scattering (DLS Nano), Scanning Electron Microscope (SEM) dan X-Ray Diffraction (XRD). Aktivitas antibakteri AgNPs diuji terhadap tiga strain bakteri, yaitu Staphylococcus aureus, Eschericia coli, dan Pseudomonas aeruginosa ditentukan dengan metode difusi menggunakan paper disc. Hasil optimasi menunjukkan konsentrasi ekstrak tanaman 0,25% dengan suhu sintesis 70°C merupakan kombinasi optimum untuk menghasilkan AgNPs terbaik, dilihat dari parameter organoleptis berupa kilau perak yang dihasilkan, rendemen tertinggi dengan bobot 9,13 mg dan ukuran partikel terkecil yaitu 129,20 nm dengan nilai PDI (Polydispersity Index) 0,25. Morfologi AgNPs menunjukkan bentuk sferis  dan kristalisasi AgNPs menunjukkan pola difraktogram yang serupa dengan standar perak. Hasil pengujian aktivitas antibakteri menunjukkan AgNPS memiliki aktivitas antibakteri yang lebih baik dari perak nitrat dan setara dengan antibiotik pembandingnya yaitu Gentamicin Sulfat untuk bakteri gram negatif dan kloramfenikol untuk gram positif.



Keywords: green synthesis; silver nanoparticles; characterization; antibacterial activity; Plantago major L.

Published at: Vol 6, No 2 (2019) pages: 69-81

DOI: 10.7454/psr.v6i2.4220


Access Counter: 1717 views

Full PDF Download

References:

Ahmed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411(23–24), 1841–1848. https://doi.org/10.1016/j.cca.2010.08.016

Erjaee, H., Rajaian, H., & Nazifi, S. (2017). Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(2), aa690b. https://doi.org/10.1088/2043-6254/aa690b

Hughes, J. M., Budd, P. M., Grieve, A., Dutta, P., Tiede, K., & Lewis, J. (2015). Highly monodisperse, lanthanide-containing polystyrene nanoparticles as potential standard reference materials for environmental “nano” fate analysis. Journal of Applied Polymer Science, 132(24). https://doi.org/10.1002/app.42061

Iravani, S., Korbekandi, H., Mirmohammadi, S. V, & Zolfaghari, B. (2014). Synthesis of silver nanoparticles : chemical , physical and biological methods, 9, 385–406.

Keat, C. L., Aziz, A., Eid, A. M., & Elmarzugi, N. A. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2(1), 47. https://doi.org/10.1186/s40643-015-0076-2

Kim, Y. (2015). Biogenic silver and gold nanoparticles synthesized using red ginseng root extract , and their applications. Artificial Cells, Nanomedicine, and Biotechnology, (April). https://doi.org/10.3109/21691401.2015.1008514

Kim, Y., Yang, D., Singh, P., Kim, Y., & Zhang, D. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms, (November). https://doi.org/10.1016/j.tibtech.2016.02.006

Liu, Z., Xing, Z., Zu, Y., Tan, S., Zhao, L., Zhou, Z., & Sun, T. (2012). Synthesis and characterization of L-histidine capped silver nanoparticles. Materials Science and Engineering C, 32(4), 811–816. https://doi.org/10.1016/j.msec.2012.01.031

Mahmood, A. ., & M.E, P. (2006). Wound Healing Activities of PM Leaf Extract in rats. International Journal Topical Medicine.

Mishra, M., Kumar, H., & Tripathi, K. (2008). Diabetic Delayed Wound Healing And The Role of Silver, 3(2), 49–54.

Oktaviani, D. T., F., D. C., & Amrullah, A. (2009). Sintesis Nano Ag Dengan Metode Reduksi Kimia, (1), 101–114.

Parashar, V., Parashar, R., Sharma, B., & Pandey, A. C. (2009). Parthenium Leaf Extract Mediated Synthesis of Silver Nanoparticles: A Novel Approach Towards Weed Utilization, 4(1), 45–50.

Pourmortazavi, S. M., Taghdiri, M., Makari, V., & Rahimi-Nasrabadi, M. (2015). Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 136(PC), 1249–1254. https://doi.org/10.1016/j.saa.2014.10.010

Sharifa, A. A., Neoh, Y. L., Iswadi, M. I., Khairul, O., Halim, M. A., Jamaludin, M., Hing, H. L. (2008). Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Annals of Microscopy, 8, 41–44.

Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., El-Agamy Farh, M., & Yang, D. C. (2016). Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artificial Cells, Nanomedicine and Biotechnology, 44(3), 811–816. https://doi.org/10.3109/21691401.2015.1008514

Swanson, H. E., Gilfrich, N. T., & Ugrinic, G. M. (1955). Standard X-Ray Diffraction Powder Patterns. U.S. Government Printing Office, Circular of the National Bureau of Standards 539, 26. https://doi.org/10.1524/zkri.1970.131.1-6.159

Tian, J., Wong, K. K. Y., Ho, C., Lok, C., Yu, W., Che, C., … Tam, P. K. H. (2007). Topical Delivery of Silver Nanoparticles Promotes Wound Healing, 129–136. https://doi.org/10.1002/cmdc.200600171

Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 4, e2589. https://doi.org/10.7717/peerj.2589

Verma, A., & Mehata, M. S. (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences, 9(1), 109–115. https://doi.org/10.1016/j.jrras.2015.11.001