Vol 5, No 3 (2018) > Articles >

Formulasi dan Karakterisasi Nanopartikel Sambungsilang Gom Xantan dan Gom Akasia Untuk Penghantaran Insulin Oral

Ade Laura Rachmawati , Silvia Surini

 

Abstract:

Nanopartikel insulin telah dikembangkan sebagai alternatif penghantaran insulin oral. Sistem penghantaran obat dengan nanopartikel dapat diperoleh dari polimer sambungsilang gom xantan dan gom akasia dengan natrium trimetafosfat. Tujuan penelitian ini untuk mendapatkan nanopartikel insulin dengan menggunakan gom xantan dan gom akasia tersambungsilang untuk penghantaran oral. Pada penelitian ini nanopartikel insulin diperoleh dengan mencampur koloid gom xantan dan gom akasia dengan perbandingan 1:1 yang kemudian direaksikan dengan natrium trimetafosfat dalam suasana basa. Kemudian insulin dalam larutan HCl dimasukkan ke dalam koloid dan dikeringkan sehingga diperoleh serbuk nanopartikel insulin. Serbuk nanopartikel insulin dikarakterisasi meliputi penentuan data derajat substitusi (DS), efisiensi penjerapan, Dv90, daya mengembang, uji pelepasan obat in vitro, dan uji stabilitas. Hasil penelitian menunjukkan bahwa nanopartikel insulin yang terbentuk memiliki DS: 0,08 – 0,10 dengan efisiensi penjerapan 26,11% - 48,73%. Selain itu, nanopartikel insulin yang diperoleh memiliki nilai Dv90: 547 nm - 726 nm, dan daya mengembang sebesar 1,1 - 2,9 kali di dalam HCl pH 1,2 dan 2,5 - 3,4 kali di dalam dapar fosfat pH 6,8. Uji pelepasan in vitro menunjukkan bahwa dalam 3 jam telah dilepaskan insulin sebanyak 78,42% - 85,09%. Hasil uji stabilitas pada suhu 4 oC menunjukkan bahwa kadar insulin dalam nanopartikel adalah 74,46% - 85,09% pada minggu ke-9. Sebagai kesimpulan, penelitian ini menunjukkan bahwa nanopartikel gom xantan dan gom akasia tersambungsilang berpotensi untuk digunakan sebagai sistem penghantaran insulin oral.



The insulin nanoparticles has been developed as an alternative to oral insulin delivery. Nanoparticle drug delivery system could be prepared by a cross-linked polymer, which was composed of xanthan gum and acacia gum, and cross-linked by sodium trimetaphosphate. The aim of the present study was to produce insulin nanoparticles using the cross-linked polymer of xanthan gum and acacia gum for oral delivery. In this study, insulin nanoparticles was prepared by mixing xanthan gum and acacia gum colloid with the ratio 1:1 and using sodium trimetaphosphate as a cross-linking agent in bases condition. Afterwards, insulin solution in HCl was added into the colloid, and then dried to produce the insulin nanoparticles. Insulin nanoparticle powders were characterized in terms of degree of substitution (DS), entrapment efficiency, Dv90, swelling ability, in vitro release study, and stability test. The results showed that the substitution degree of the insulin nanoparticles was 0.08 – 0.10 and the entrapment efficiency was 26.11% - 48.73%. Moreover, the insulin nanoparticles had Dv90 value 547 nm - 726 nm and swelling index of 1.1 - 2.9 in HCl pH 1.2 and 2.5 - 3.4 in phosphate buffer pH 6.8, respectively. According to the dissolution study, the insulin nanoparticles provided the insulin release of 78.42% - 85.67% within 3 hours. Furthermore, stability testing showed insulin content after 9 weeks incubation at 4oC was 74.46% - 85.09%. Therefore, this work demonstrated that a cross-linked polymer of xanthan gum and acasia gum nanoparticle could be potential for could be potential for oral insulin delivery system.


Keywords: insulin nanoparticles; crosslinked; oral insulin; xanthan gom; gom acacia

Published at: Vol 5, No 3 (2018) pages: 159-168

DOI: 10.7454/psr.v5i3.4192


Access Counter: 171 views

Full PDF Download

References:

Agnihotri SA, Malikarjuna NN, & Aminabhavi TM. (2004). Recent advances on chitosan-based micro and nanoparticles in drug delivery. Journal of Controll Release, 100, 5-28.

Alai MS, Lin WJ, & Pingale SS. (2015). Application of polymeric nanoparticles amd micelles in insulin oral delivery. Journal of Food and Drug Analysis, 23,351-358.

Avadi MR, Sadeghi AMM, Dounighi NM, Dinarvand R, Atyabi F, & Tehrani MR. (2011). Ex vivo evaluation of insulin nanoparticles using chitosan and arabic gum. ISRN Pharmaceutics.

Bejenariu A, Popa M, Dulong V, Picton L, & Le Cerf D. (2009). Trisodium trimetaphosphate crosslinked xanthan networks: Synthesis, swelling, loading and releasing behaviour. Polymer Bulletin, 62(4), 525–538.

Bhardwaj V, Hariharan S, Bala L, Lamprecht A, Kumar N, Pachagnula R Ravi, & Kumar MNV. (2006). Pharmaceutical aspect of polymeric nanoparticles for oral drug delivery. Journal of Biomedical Nanotechnology, 1(3), 234-258.

Calceti P, Salmaso S, Walker G, & Bernkop-Schnurch A. (2004). Development and in vitro evaluation of an oral insulin-PEG delivery system. European Journal of Pharmaceutical Science, 22, 315-323.

Chopra Sunandini. (2017). Development of nanoparticles for oral delivery of insulin. Massachusetts Institute of Technology.

Coelho S, Flores SM, Herrera JL, Coelho MAN, Pereira AC, & Rocha S. (2011). Nanostructure of polysaccharide complexes. Journal of colloid and interface science. 363(2), 450-5.

Date AA, Hanes J, Ensign LM. (2016). Nanoparticles for oral delivery: design, evaluation and state-of the art. Journal Control Release, 240, 505-526.

Daud Nur Saadah. (2015). Formulasi dan karakterisasi nanopartikel insulin menggunakan polimer kitosan bobot molekul rendah dan pektin dengan metode gelasi ionik. Magister Ilmu Farmasi Universitas Gadjah Mada Jogja.

Delie F, & Blanco-Prieto MJ. (2005). Polymeric particulate to improve oral bioavaibility of peptide drugs. Moleculs, 65-80.

Desplanques S, Renou F, Grisel M, & Malhiac C. (2012). Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocolloids, 27(2), 401–410.

Friedman AD,Claypool SE, & Liu R. (2013). The smart targeting of nanoparticles. National Institutes of Health, 19(35), 6315-6329.

García _Ochoa F, Santos VE, Casas JA, & Gómez E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549-579.

Guo J, Ge L, Li X, Mu C, & Li D. (2014). Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 39, 243–250.

Istiyani Khoirul. (2008). Mikroenkapsulasi insulin untuk sediaan oral menggunakan metode emulsifikasi dengan penyalut natrium alginat dan kitosan. Fakultas Matematika dan Ilmu pengetahuan Alam program magister farmasi depok. Universitas Indonesia.

Liu J, Wang B, Lin L, Zhang J, Liu W, Xie J, & Ding Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45–52.

Maitra J & Shukla VK. (2014). Cross-linking in hydrogels- A review, American Journal of Polymer doi: 10.5923/j.ajps.20140402.01.

Mardliyati E, Mutaqqien SE, & Setyawati DR. (2012). Preparasi dan aplikasi nanopartikel kitosan sebagai sistem penghantaran insulin secara oral. Pusat teknologi farmasi dan medika BPPT.

Marthur A. (2003). Studies on Phosphorylation of Starch in Potato Tubers (Solanum tuberosum L,). Patala: Dissertation. Departement of Biotechnology and Environmental sciences thapar Institute of Engineering and Technology Patiala.

Mohanraj VJ & Chen Y. (2006). Nanoparticles – A review. Trop. J. Of pharmaceuiticals, 561-573.

Mutalijeva B, Grigoriev D, Madybekova G, Sharipova A, Aidarova S, Saparbekova A & Miller R. (2017). Microencapsulation of insulin and its release using w/o/w double emulsion method. Colloids and Surface A : Physicochemical and Engineering Aspects, 521, 147-152.

Ogaji IJ, Nep EI, & Audu-Peter JD. (2012). Advances in Natural Polymers as Pharmaceutical Excipients. Pharmaceutica Analytica Acta, 3(1), 1–16.

Patravale VB, Date AA, Kulkarni RM. (2004). Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol, 567, 827-840.

Reddy MM, V Shanmugam, & Kaza R. (2012). Design and characterization of insulin nanoparticles for oral delivery. International Journal of Innovative Pharmaceutical Research, 3(3), 238-243.

Renunkuntla J, Vadlapudi AD, Patel A, Boddu SHS, & Mitra AK. (2013). Approaches for enhancing oral bioavailabilty of peptides and proteins. International Journal of Pharmaceutics 447, 75-93.

Rowe RC, Sheskey PJ, & Quinn ME. (2009). Hand Book Of Pharmaceutical Excipient (6th ed.). London: Pharmaceutical Press.

Sarika PR, Cinthya K, Jayakrishnan A, Anilkumar PR, & James NR. (2014). Modified gum arabic cross-linked gelatin scaffold for biomedical applications. Materials Science and Engineering.

Shabir GA. (2003). Validation of high-performance liquid chromatography methods for pharmaceuticals analysis. Journal of Chromatography A, 987, 57-66.

Shah N, K Rajubhai, & mehta T. (201s6). Crosslinking of starch and its effect on viscosity behaviour. Chemical Engineering, 32(2), 265-270.

Sood A, Miglani S, & Moorthy D. (2001). Breakage of insulin syringe needle in subcutaneous tissue. Journal of Pediatric Endocrinology and Metabolism, 14(1), 101-102.

Surini S, Akiyama H, Morishita M, Nagai T, & Takayama K. (2003). Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. Journal of controlled Release, 90, 291-301.

Sweetman SC. (2009). Martindale : The complete drug Reference. Edisi 36. London : Pharmaceutical press, 443-453, 1548-1550.

TaoY, Zhang R, Xu W, Bai Z, Zhou Y, Zhao S, Xu Y, Yu D. (2016). Rheological behavior and microsructure of rellease-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocolloids, 52,923-933.

Tiyabonchai W. (2003). Chitosan nanoparticles; A promosing system for drug delivery. Nares. Uni Journals, 11(3), 51-66.

Wati DR. (2017). Preparasi dan karakterisasi eksipien sambung silang dari koproses xantan gum-gum akasia sebagai matriks pada sediaan tablet lepas lambat. Fakultas Farmasi program sarjana farmasi depok. Universitas Indonesia.

Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, & Veiga F. (2012). Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. Biodrugs, 22, 223-237.