Vol 5, No 2 (2018) > Articles >

Antimicrobial and Cytotoxic Properties of the Ascidians Lissoclinum patella, Oxycoryna fascicularis, Didemnum molle and Botryllus schlosseri

Firmansyah Karim , Masteria Yunovilsa Putra , Tri Aryono Hadi , Muhammad Abrar

 

Abstract: The aim of this research is to investigate antimicrobial and cytotoxic activity from Indonesian ascidians. Extracts prepared from the Indonesian ascidians Lissoclinum patella, Oxycoryna fascicularis, Didemnum molle and Botryllus schlosseri were assessed for anti-microbial and cytotoxic properties. Antibacterial activity of the extracts was tested against two Gram-positive bacteria, viz. Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923, and three Gram-negative bacteria, viz. Escherichia coli ATCC 25922, Vibrio cholerae ATCC 14035 and Pseudomonas aeruginosa ATCC 101454 using the disk diffusion test. Antifungal activity was also tested against Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404. The minimum inhibitory concentrations (MICs) of potential ascidian extracts were determined by the microdilution technique. Cytotoxicity of the extracts was assessed using the brine shrimp lethality bioassay. By comparing the inhibition zones in the disk diffusion test, the most active anti-bacterial activity against Gram-positive bacteria (S. aureus and B. subtilis) was found in the crude extracts of Oxycoryna fascicularis and Didemnum molle. Lissoclinum patella extract showed the highest activity against the Gram-negative bacteria E. coli and V. cholerae. The LC50 values of the crude extracts of Lissoclinum patella, Didemnum molle, Botryllus schlosseri, and Oxycoryna fascicularis were 74.3, 97.2, 114.7 and 132.9 μg/ml, respectively. In our study, the most promising species for anti-microbial and cytotoxic properties are Lissoclinum patella and Didemnum molle.

Keywords: ascidians; antibacterial; antifungal; cytotoxicity

Published at: Vol 5, No 2 (2018) pages: 65-71

DOI: 10.7454/psr.v5i2.4137


Access Counter: 1380 views

Full PDF Download

References:

Abdillah S, Cita Y, Muzaki F, & Abdulgani N. (2015). Absence of anti-Staphylococcus aureus (MRSA) activity of secondary metabolite actinomycetes associated sponges from Pulau Panjang, Indonesia. Journal of Pharmaceutical Negative Results, 6(1), 33–36.

Castro-Carvalho B, Ramos A, Prata-Sena M, Malhão F, Moreira M, Gargiulo D, Rocha E. (2017). Marine-derived fungi extracts enhance the cytotoxic activity of doxorubicin in nonsmall cell lung cancer cells A459. Pharmacognosy Research, 9(6), 92–98.

Cos P, Vlietinck AJ, Berghe D Vanden, & Maes L. (2006). Anti - infective potential of natural products : How to develop a stronger in vitro ’ proof - of - concept ’. Journal of Ethnopharmacology, 106, 290–302.

Cuevas C, & Francesch A. (2009). Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Natural Product Reports, 26, 322–377.

De Rosa S, De Giulio A, & Iodice C. (1994). Biological effects of prenylated hydroquinones: Structure-activity relationship studies in antimicrobial, brine shrimp, and fish lethality assays. Journal of Natural Products, 57, 1711–1716.

Deepa S, Venkateshwaran P, Vinithkumar NV, & Kirubagaran R. (2017). Bioactive Propensity of Macroalgae from the Andaman & Nicobar Islands. Pharmacognosy Journal, 9(6), 815–820.

Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, & Hamann MT. (2008). Mollamides B and C, cyclic hexapeptides from the indonesian tunicate Didemnum molle. Journal of Natural Products, 71(6), 941–945.

Gordon EM, Sankhala KK, Chawla N, & Chawla SP. (2016). Trabectedin for Soft Tissue Sarcoma: Current Status and Future Perspectives. Advances in Therapy, 33, 1055–1071.

Joullié MM, Leonard MS, Portonovo P, Liang B, Ding X, & La Clair JJ. (2003). Chemical defense in ascidians of the Didemnidae family. Bioconjugate Chemistry, 14, 30–37.

Litaudon M, Trigalo F, Martin MT, Frappier F, & Guyot M. (1994). Lissoclinotoxins: Antibiotic polysulfur derivatives from the tunicate Lissoclinum perforatum. Revised structure of lissoclinotoxin A. Tetrahedron, 50(18), 5323–5334.

Malanovic N, & Lohner K. (2016). Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals, 9 (3), 59.

Malve H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy and Bioallied Sciences, 8(2), 83–91.

Mcdonnell G, & Russell AD. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147-179.

Mclaughlin JL, Rogers LL, & Anderson JE. (1998). The use of biological assays to evaluate botanicals. Therapeutic Innovation & Regulatory Science, 32, 513–524.

Menna M. (2009). Antitumor potential of natural products from Mediterranean ascidians. Phytochemistry Reviews, 8, 461–472.

Palanisamy SK, Rajendran NM, & Marino A. (2017). Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. Natural Products and Bioprospecting, 7(1), 1–111.

Paul V, Lindquist N, & Fenical W. (1990). Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. Marine Ecology Progress Series, 59, 109–118.

Pisut DP, & Pawlik JR. (2002). Anti-predatory chemical defenses of ascidians: Secondary metabolites or inorganic acids? Journal of Experimental Marine Biology and Ecology, 270, 203–214.

Qaralleh H, Idid S, Saad S, Susanti D, Taher M, & Khleifat K. (2010). Antifungal and Antibacterial Activities of Four Malaysian Sponge Species (Petrosiidae). Journal de Mycologie Médicale, 20(4), 315–320.

Ramos A, Castro-Carvalho B, Prata-Sena M, Dethoup T, Buttachon S, Kijjoa A, & Rocha E. (2016). Crude extracts of marine-derived and soil fungi of the genus Neosartorya exhibit selective anticancer activity by inducing cell death in colon, breast and skin cancer cell lines. Pharmacognosy Research, 8(1), 8–15.

Rashid MA, Gustafson KR, Cardellina JH, & Boyd M R. (1995). Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian lissoclinum patella. Journal of Natural Products, 58(4), 594–597.

Schmidt EW, & Donia MS. (2010). Life in cellulose houses: Symbiotic bacterial biosynthesis of ascidian drugs and drug leads. Current Opinion in Biotechnology, 21(6), 827-833.

Schumacher RW, & Davidson BS. (1999). Synthesis of didemnolines A-D, N9-substituted β-carboline alkaloids from the marine ascidian Didemnum sp. Tetrahedron, 51(37), 10125–10130.

Shaala LA, Youssef DTA, Ibrahim SRM, Mohamed GA, Badr JM, Risinger AL, & Mooberry SL. (2014). Didemnaketals F and G, new bioactive spiroketals from a Red Sea ascidian Didemnum species. Marine Drugs, 12(9), 5021–5034.

Sikorska J, Hau AM, Anklin C, Parker-Nance S, Davies-Coleman MT, Ishmael JE, & McPhail KL. (2012). Mandelalides A-D, cytotoxic macrolides from a new Lissoclinum species of South African tunicate. Journal of Organic Chemistry, 77(14), 6066–6075.

Sikorska J, Parker-Nance S, Davies-Coleman MT, Vining OB, Sikora AE, & McPhail KL. (2012). Antimicrobial rubrolides from a South African species of synoicum tunicate. Journal of Natural Products, 75(10), 1824–1827.

Tadesse M, Gulliksen B, Strøm MB, Styrvold OB, & Haug T. (2008). Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. Journal of Invertebrate Pathology, 99(3), 286–293.

Teruya T, Sasaki H, & Suenaga K. (2008). Hexamollamide, a hexapeptide from an Okinawan ascidian Didemnum molle. Tetrahedron Letters, 49, 5297–5299.

Tianero MDB, Kwan JC, Wyche TP, Presson A P, Koch M, Barrows LR, Schmidt EW. (2015). Species specificity of symbiosis and secondary metabolism in ascidians. ISME Journal, 9, 615–628.

Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, & Bugni TS. (2012). Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. Journal of Natural Products, 75(4), 735–740.