Vol 5, No 3 (2018) > Articles >

Karakterisasi Gelatin Hasil Ekstraksi dari Kulit Ikan Patin (Pangasius hypophthalmus) dengan Proses Asam dan Basa

Azlaini Yus Nasution , Harmita Harmita , Yahdiana Harahap

 

Abstract:

Gelatin yang ada di pasaran mayoritas berasal dari babi dan sapi. Bahan baku pembuatan gelatin dari sumber lain terus diteliti karena erat kaitannya dengan kehalalan produk. Saat ini gelatin dari ikan merupakan salah satu alternatif sumber pembuatan gelatin. Ikan patin (Pangasius hypophthalmus) adalah jenis ikan yang dikembangkan di Kabupaten Kampar, Provinsi Riau. Kulit ikan patin ini dapat dijadikan sebagai sumber bahan baku pada pembuatan gelatin. Penelitian ini bertujuan untuk membandingkan hasil karakterisasi gelatin yang diekstraksi dari kulit ikan patin melalui proses asam dan basa. Pada proses asam digunakan asam sulfat pH 3 lalu diekstraksi dengan aquades pada suhu 60oC. Pada proses basa, dilakukan penambahan NaOH 0,2 N yang diikuti dengan asam asetat 0,05 N dan diekstraksi dengan aquades pada suhu 60oC. Karakterisasi yang dilakukan meliputi perhitungan nilai rendemen, uji organoleptis, kadar air, pH, kadar abu, viskositas, kekuatan gel dan analisis profil tekstur menggunakan texture analyzer, kadar protein dengan metode Kjeldahl dan kadar asam amino secara KCKT. Karakterisasi gelatin ikan patin dengan proses asam memberikan hasil sebagai berikut: rendemen (14,94%), kadar air (9,80%), pH (5,14), kadar abu (0,19%), viskositas (3,12 cP), kadar protein (97,71%), dan kadar asam amino tertinggi yaitu glisin = 16,90%, prolin = 11,08%, asam glutamat = 9,10%. Hasil karakterisasi gelatin dengan proses basa: rendemen (14,30%), kadar air (7,25%), pH (5,35), kadar abu (1,54%), viskositas (5,35 cP), kekuatan gel (141,5 g), kadar protein (91,92%), kadar asam amino paling banyak yaitu glisin = 18,15% , prolin = 12,30% , asam glutamat = 10,73%. Gelatin ikan patin yang dihasilkan melalui proses basa menunjukkan karakteristik yang lebih baik daripada proses asam.



Gelatin in the majority market comes from pigs and cows. The raw material of gelatin manufacture from other sources continue to be studied because it closely related with halal product. Currently gelatin from fish is an alternative to gelatin making. Catfish (Pangasius hypophthalmus) is a fish species developed in Kampar regency of Riau Province. The catfish skin can be used as raw material source in gelatin production. This study aims to compare the characteristics of gelatin extracted from catfish skin with acid and alkaline pretreatment. In the acid pretreatment, sulfuric acid is used until the solution at pH 3, then it is extracted with distilled water at 60ºC. In the alkaline pretreatment, the sample was added by 0.2 N NaOH followed by 0.05 N acetic acid and then extracted with distilled water at 60ºC. Characterizations done were including calculation of rendement value, organoleptic test, moisture content, pH, ash content, viscosity, gel strength and texture profile analysis using texture analyzer, protein content with Kjeldahl method and analysis amino acid with HPLC. Characterization of catfish gelatin with acid process gives the following results: rendement (14.94%), water content (9.80%), pH (5.14), ash (0.19%), viscosity (3.12 cP), protein content (97.71%), and highest amino acids, glycine = 16.90 %, proline = 11.08%, glutamic acid = 9.10 %. The result of gelatin characterizations with alkaline process: rendement (14.30%), water content (7.25%), and pH (5.35), ash content (1.54%), viscosity (5.35 cP), gel strength (141,5 g), protein content (91.92%), the highest amino acid content are glycine = 18.15%, proline = 12.30%, glutamic acid = 10.73%. Catfish gelatin through alkaline pretreatment exhibits better properties than acid pretreatment.


Keywords: catfish gelatin (Pangasius hypophthalmus), gel strength, protein content, amino acids composition, HPLC

Published at: Vol 5, No 3 (2018) pages: 142-151

DOI: 10.7454/psr.v5i3.4029


Access Counter: 179 views

Full PDF Download

References:

Adilah ZAM & Hanani ZAN. (2016). Active packaging of fish gelatin films with morinda citrifolia oil. Food Bioscience, doi: http://dx.doi.org/10.1016/j.fbio.2016.10.002.

Ahmad M & Benjakul S. (2011). Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hidrocolloids, 25, 381-388

Alfaro AT, Biluca FC, Marquetti C, Tonial IB, & de Souza NE. (2014). African catfish (Clarias gariepinus) skin gelatin: Extraction optimization and physical-chemical properties. Food Research International. doi:10.1016/j.foodres.2014.05.070

Arnesen JA, & Gildberg A. (2007). Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresource Technology, 98, 53-57

AOAC. (1995). Official Methods of Analysis of AOAC International (16th ed.). Washington DC: Association of Official Analytical Chemists

Azilawati MI, Hashim DM, Jamilah B, & Amin I. (2015). RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins. Food chemistry, 172, 368-376

Badii F, & Howell NK. (2006). Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids, 20, 630–640

Benjakul S, Oungbho K, Visessanguan W, Thiansilakul Y, & Roytrakul S. (2009). Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. Food Chemistry, 116(2), 445-451

Binsi PK, Shamasundar BA, Dileep AO, Badii F, Howell NK. (2009). Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocolloids, 23, 132–145

Boran G, Mulvaney SJ, & Regenstein JM. (2010). Rheological properties of gelatin from silver carp skin compared to commercially available gelatins from different sources. Journal of Food Science, 75(8), E565-E571

Boran G, & Regenstein JM. (2010). Advances in food and nutrition research. Vol. 60: Elsevier

Chandra MV, & Shamasundar BA. (2015). Rheological properties of gelatin prepared from the swim bladders of freshwater fish Catla catla. Food Hydrocolloids, doi: 10.1016/j.foodhyd.2015.01.022

Cheow CS, Norizah MS, Kyaw ZY, & Howell NK. (2007). Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chemistry, 101, 386-391

Cho SM, Gu YS, & Kim SB. (2005). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19(2), 221-229

GMIA. (2012). Gelatin Handbook. USA: Gelatin Manufacturers Institute of America

Gómez-Estaca J, Montero P, Fernández-Martín F, & Gómez-Guillén MC. (2009). Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: A comparative study. Journal of Food Engineering, 90, 480–486

Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, & Montero P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3-16

Gudmundsson & Hefsteinsson. (1997). Gelatin from cod skins as affected by chemical treatments. Journal of Food Science, 62(1), 37-47

Gudmundsson M. (2002). Rheological properties of fish gelatins. Journal of Food Science, 67(6), 2172-2176

Hafidz RMRN, Yaakob CM, Amin I, & Noorfaizan A. (2011). Chemical and functional properties of bovine and porcine skin gelatin. International Food Research Journal, 18, 813-817

Hastuti D, & Sumpe I. (2007). Pengenalan dan Proses Pembuatan Gelatin. Mediagro, 3(1), 39-48

Haug IJ, & Draget KI. (2011). Handbook of Food Proteins. Woodhead Publishing Limited

Jamilah B, & Harvender KG. (2002). Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry, 77, 81–84

Jamilah B, Tan KW, Umi Hartina MR, & Azizah A. (2011). Gelatins from three cultured freshwaterfish skins obtained by liming process. Food Hydrocolloids, 25, 1256-1260

Jellouli K, Balti R, Bougatef A, Hmidet N, Barkia A, & Nasri M. (2011). Chemical composition and characteristics of skin gelatin from grey triggerfish (Balistes capriscus). LWT-Food Science and Technology, 44(9), 1965-1970

Jongjareonrak A, Benjakul S, Visessanguan W, Prodpran T, Tanaka M. (2006). Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 20, 492–501

Karim AA, & Bath R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23, 563–576

Kemendag RI. (2013). Ikan patin hasil alam bernilai ekonomi dan berpotensi ekspor tinggi. Warta ekspor, Ditjen PEN/MJL/004/10/2013, 3-11

Lassoued I, Jridi M, Nasri R, Dammak A, Hajji M, Nasri M, & Barkia A. (2014). Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsin-aided process in comparison with commercial halal bovine gelatin. Food Hydrocolloids, 41, 309-318

Liu H, Li D, & Guo S. (2008). Extraction and properties of gelatin from channel catfish (Ictalurus punetaus) skin. Swiss Society of Food Science and Technology. LWT, 41, 414-419

Mahmoodani F, Sanaei V, Ardekani A, Fern SS, Yusof SM, & Babji AS. (2014). Optimization of extraction and physicochemical properties of gelatin from pangasius catfish (Pangasius sutchi) skin. Sains Malaysiana, 43(7), 995–1002

Masuda A & Dohmae N. (2011). Amino acid analysis of sub-picomolar amounts of proteins by precolumn fluorescence derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Bioscience trends, 5(6), 231-238

Muyonga JH, Cole CGB, & Duodu KG. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86, 325–332

Nhari RMHR, Ismail A, & Che Man YB. (2012). Analytical methods for gelatin differentiation from bovine and porcine origins and food products. Journal of Food Science, 71, Nr. 1, R42-R46

Nalinanon S, Benjakul S, Visessanguan W, & Kishimura H. (2008). Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food Hydrocolloids, 22(4), 615-622

Ninan G, Jose J, & Abubacker Z. (2011). preparation and characterization of gelatin extracted from the skins of rohu (Labeo rohita) and common carp (Cyprinus carpio). Journal of Food Processing and Preservation, 35, 143–162

Rapisarda M, Valenti G, Carbone DC, Rizzarelli P, Recca G, La Carta, S, ... & Fincchiaro S. (2018). Strength, fracture and compression properties of gelatins by a new 3D printed tool. Journal of Food Engineering, 220, 38-48

Regenstein JM, & Zhou P. (2007). Maximising the Value of Marine By-Products. Cambridge, England: Woodhead Publishing

Shafiur Rahman M, & Al-Mahrouqi AI. (2009). Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels. International journal of food sciences and nutrition, 60(sup7), 229-242

Schrieber R, & Gareis H. (2007). Gelatine handbook theori and industrial practice. Germany: WILEY-VCH Verlag GmbH&Co. KgaA

See SF, Hong PK, Ng KL, Wan Aida WM, & Babji AS. (2010). Physicochemical properties of gelatins extracted from skins of different freshwater fish species. International Food Research Journal, 17, 809-816

Shyni K, Hema GS, Ninan G, Mathew S, Joshy CG, & Lakshmanan PT. (2014). Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food Hydrocolloids, 39, 68-76

Sila A, Martinez-Alvarez O, Krichen F, Gómez-Guillén MC, & Bougatef A. (2017). Gelatin prepared from European eel (Anguilla anguilla) skin: Physicochemical, textural, viscoelastic and surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 643-650

Sinthusamran S, Benjakul S, & Kishimura H. (2014). Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chemistry, 152, 276-284

SNI (Standar Nasional Indonesia). (1995). Gelatin. Badan Standardisasi Nasional Indonesia

Songchotikunpan P, Tattiyakul J, & Supaphol P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42, 247–255.

Trilaksani W, Nurilmala M, & Setiawati IH. (2012). Ekstraksi gelatin kulit ikan kakap merah (Lutjanus sp.) dengan proses perlakuan asam. Jurnal Pengolahan Hasil Perikanan Indonesia, 15(3), 240-251

Uriarte-Montoyaa MH, Santacruz-Ortega H, Cinco-Moroyoqui FJ, Rouzaud-Sández O, Plascencia-Jatomea M, & Ezquerra-Brauer JM. (2011). Giant squid skin gelatin: Chemical composition and biophysical characterization. Food Research International, 44, 3243–3249

Van VQ, Van Hau P, & Toan HT. (2008). Study on gelatin processing from “Tra”(Pangasius hypophthalmus) catfish skin. , 429-429

Waters. (2012). Waters Acquity UPLC H Class and H Class BioAmino Acid Analysis System Guide. USA: Waters

Wu J, Sun X, Guo X, Ge S, & Zhang Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatinfilms incorporated with cinnamon essential oil. Aquaculture and Fisheries, 1-8, doi: http://dx.doi.org/10.1016/j.aaf.2017.06.004

Yang H, Wang Y, Zhou P, & Regenstein JM. (2008). Effects of alkaline and acid pretreatment on the physical properties and nanostructures of the gelatin from channel catfish skins. Food Hydrocolloids, 22,1541–1550

Zhou P, Mulvaney SJ, & Regenstein JM. (2006). Properties of Alaska pollock skin gelatin: a comparison with tilapia and pork skin gelatins. Journal of Food Science, 71(6), 313-321.